翻訳と辞書
Words near each other
・ Perttu Hyvärinen
・ Perttu Kivilaakso
・ Perttu Leppä
・ Perttu Lindgren
・ Perttula
・ Pertubuhan Kebangsaan Melayu Singapura
・ Pertuis
・ Pertuis d'Antioche
・ Pertunmaa
・ Perturbation
・ Perturbation (astronomy)
・ Perturbation (geology)
・ Perturbation function
・ Perturbation problem beyond all orders
・ Perturbation theory
Perturbation theory (quantum mechanics)
・ Perturbative QCD
・ Perturbator
・ Perturbazione
・ Pertusa
・ Pertusa (Africa)
・ Pertusa (Spain)
・ Pertusaria
・ Pertusaria lactea
・ Pertusariaceae
・ Pertusariales
・ Pertusio
・ Pertussis
・ Pertussis toxin
・ Pertussis vaccine


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Perturbation theory (quantum mechanics) : ウィキペディア英語版
Perturbation theory (quantum mechanics)
In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is known, and add an additional "perturbing" Hamiltonian representing a weak disturbance to the system. If the disturbance is not too large, the various physical quantities associated with the perturbed system (e.g. its energy levels and eigenstates) can be expressed as "corrections" to those of the simple system. These corrections, being small compared to the size of the quantities themselves, can be calculated using approximate methods such as asymptotic series. The complicated system can therefore be studied based on knowledge of the simpler one.
== Applications of perturbation theory ==
Perturbation theory is an important tool for describing real quantum systems, as it turns out to be very difficult to find exact solutions to the Schrödinger equation for Hamiltonians of even moderate complexity. The Hamiltonians to which we know exact solutions, such as the hydrogen atom, the quantum harmonic oscillator and the particle in a box, are too idealized to adequately describe most systems. Using perturbation theory, we can use the known solutions of these simple Hamiltonians to generate solutions for a range of more complicated systems.
For example, by adding a perturbative electric potential to the quantum mechanical model of the hydrogen atom, we can calculate the tiny shifts in the spectral lines of hydrogen caused by the presence of an electric field (the Stark effect). This is only approximate because the sum of a Coulomb potential with a linear potential is unstable (has no true bound states) although the tunneling time (decay rate) is very long. This instability shows up as a broadening of the energy spectrum lines, which perturbation theory fails to reproduce entirely.
The expressions produced by perturbation theory are not exact, but they can lead to accurate results as long as the expansion parameter, say , is very small. Typically, the results are expressed in terms of finite power series in that seem to converge to the exact values when summed to higher order. After a certain order however, the results become increasingly worse since the series are usually divergent (being asymptotic series). There exist ways to convert them into convergent series, which can be evaluated for large-expansion parameters, most efficiently by Variational method.
In the theory of quantum electrodynamics (QED), in which the electronphoton interaction is treated perturbatively, the calculation of the electron's magnetic moment has been found to agree with experiment to eleven decimal places. In QED and other quantum field theories, special calculation techniques known as Feynman diagrams are used to systematically sum the power series terms.
Under some circumstances, perturbation theory is an invalid approach to take. This happens when the system we wish to describe cannot be described by a small perturbation imposed on some simple system. In quantum chromodynamics, for instance, the interaction of quarks with the gluon field cannot be treated perturbatively at low energies because the coupling constant (the expansion parameter) becomes too large. Perturbation theory also fails to describe states that are not generated adiabatically from the "free model", including bound states and various collective phenomena such as solitons. Imagine, for example, that we have a system of free (i.e. non-interacting) particles, to which an attractive interaction is introduced. Depending on the form of the interaction, this may create an entirely new set of eigenstates corresponding to groups of particles bound to one another. An example of this phenomenon may be found in conventional superconductivity, in which the phonon-mediated attraction between conduction electrons leads to the formation of correlated electron pairs known as Cooper pairs. When faced with such systems, one usually turns to other approximation schemes, such as the variational method and the WKB approximation. This is because there is no analogue of a bound particle in the unperturbed model and the energy of a soliton typically goes as the ''inverse'' of the expansion parameter. However, if we "integrate" over the solitonic phenomena, the nonperturbative corrections in this case will be tiny; of the order of exp(−1/) or exp(−1/2) in the perturbation parameter . Perturbation theory can only detect solutions "close" to the unperturbed solution, even if there are other solutions for which the perturbative expansion is not valid.
The problem of non-perturbative systems has been somewhat alleviated by the advent of modern computers. It has become practical to obtain numerical non-perturbative solutions for certain problems, using methods such as density functional theory. These advances have been of particular benefit to the field of quantum chemistry. Computers have also been used to carry out perturbation theory calculations to extraordinarily high levels of precision, which has proven important in particle physics for generating theoretical results that can be compared with experiment.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Perturbation theory (quantum mechanics)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.